Research

We are limited in our information processing capacity. Yet, we can successfully navigate our surroundings and establish complicated tasks. This is thanks to the effective interplay between different types of memory and selective attention. My research focuses on investigating how working memory, long-term memory, and selective attention interact to guide our behavior.

Attention guided to memories

 

Some information is more important than others, not only in the external world but also in our mind. 

We can attend to a particular memory representation more than the other. But what is the consequence of such differential attentional weighing of memories? Is the attended memory remembered with greater precision? Are unattended memories forgotten? 

We found that attending to memory makes it less likely to be forgotten and also more precise. This benefit is partly due to the protection of the attended representation against interference. It takes about 400-600 ms to establish attention-based protection (van Moorselaar et al., 2015). The fate of unattended memories, on the other hand, depends on their potential future relevance. An unattended representation is more likely to be forgotten if there is a lower chance for it to become relevant in the future (Gunseli et al., 2015; Gunseli et al., 2018). Together, these results show that attention and storage in WM are distinct processes and that attention protects WM representations.

Tarder-Stoll, H.*, Jayakumar, M.*, Dimsdale-Zucker, H. R., Günseli, E., Aly, M. (2020). Dynamic internal states shape memory retrieval. Neuropsychologia. Link to preprint.

 

Gunsel, Fahrenfort, van Moorselaar, Daoultzis, Meeter, & Olivers (2019). EEG dynamics reveal a dissociation between selective attention and storage in working memory. Nature Scientific Reports. Link.

Gunseli, E., van Moorselaar, D., Meeter, M., & Olivers, C. N. L. (2015). The reliability of retro-cues determines the fate of non-cued visual working memory representations. Psychonomic Bulletin & Review, 22(5), 1334-1341. PDF.

 

van Moorselaar, D., Gunseli, E., Theeuwes, J., & Olivers, C. N. L. (2015). The time course of protecting a visual memory representation from perceptual interference. Frontiers in Human Neuroscience, 8, 1053. PDF.

Effects of task-irrelevant events on working memory

 

Working memory is the maintenance of information in an active brain state. Only 2-3 items can be held in working memory. Given that working memory consumes energy and is severely limited in capacity, it is reasonable to expect that it would only maintain information that is useful for ongoing tasks. 

We found that the transfer of currently relevant information to long-term memory results in the prioritization of currently irrelevant information in working memory. As a result, the irrelevant information can guide attention to task-irrelevant stimuli in the external word and alter the performance of ongoing tasks.

This finding suggests that contrary to the expectation, working memory can sometimes maintain task-irrelevant information even when this is detrimental to the ongoing task.

Gunseli, E., Meeter, M., & Olivers, C. N. L. (2015). Task-Irrelevant Memories Rapidly Gain Attentional Control with Learning. Journal of Experimental Psychology: Human Perception and Performance. PDF.

Attention guided by memories

 

Humans have very limited information processing capacity yet they are faced with a vast amount of information in almost every moment of their lives. Therefore, we need to select the most relevant information and inhibit information that is irrelevant to their current task goals. But how do we know what to select? 

Attention is guided by memory representations or so-called attentional templates. Attentional templates can be stored either actively in working memory or passively in long-term memory. Do templates in working memory differ in the way they guide attention from templates in long-term memory? If so, does the memory status change depending on the type of anticipated attentional guidance? For example, do we form an active template for our friend whom we are looking for in a crowded mall instead of an empty beach?

 

Our research shows that the anticipated difficulty of search determines the effort of maintaining the search template (Gunseli et al., 2014a; Gunseli et al., 2014b). However, repeatedly searching for the same target results in the transfer of the search template from working memory to long-term memory independent of the anticipated search difficulty (Gunseli et al., 2014a). When there is a conflict between working memory and long-term memory goals working memory is the winner: We involuntarily attend to the distracters that match our working memory (Gunseli et al., 2015).

Günseli, E, Aly, M. (2020). Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. eLife. Link to preprint.

 

Gunseli, E., Meeter, M., & Olivers, C. N. L. (2015). Task-Irrelevant Memories Rapidly Gain Attentional Control with Learning. Journal of Experimental Psychology: Human Perception and Performance. PDF.

 

Gunseli, E., Meeter, M., & Olivers, C. N. L. (2014). Is a search template an ordinary working memory? Comparing electrophysiological markers of working memory maintenance for visual search and recognition. Neuropsychologia,60, 29-38. PDF

Gunseli, E., Olivers, C. N. L., & Meeter, M. (2014). Effects of search difficulty on the selection, maintenance, and learning of attentional templates. Journal of Cognitive Neuroscience. 26, 2042- 2054. PDF.